Effectiveness of mid-infrared spectroscopy to predict the color of bovine milk and the relationship between milk color and traditional milk quality traits
Mcdermott A., Visentin G., Mcparland S., Berry D.P., Fenelon M.A., De Marchi M (2016)
The color of milk affects the subsequent color features of the resulting dairy products; milk color is also related to milk fat concentration. The objective of the present study was to quantify the ability of mid-infrared spectroscopy (MIRS) to predict color-related traits in milk samples and to estimate the correlations between these color-related characteristics and traditional milk quality traits. Mid-infrared spectral data were available on 601 milk samples from 529 cows, all of which had corresponding gold standard milk color measures determined using a Chroma Meter (Konica Minolta Sensing Europe, Nieuwegein, the Netherlands); milk color was expressed using the CIELAB uniform color space. Separate prediction equations were developed for each of the 3 color parameters (L* = lightness, a* = greenness, b* = yellowness) using partial least squares regression. Accuracy of prediction was determined using both cross validation on a calibration data set (n = 422 to 457 samples) and external validation on a data set of 144 to 152 samples. Moderate accuracy of prediction was achieved for the b* index (coefficient of correlation for external validation = 0.72), although poor predictive ability was obtained for both a* and L* indices (coefficient of correlation for external validation of 0.30 and 0.55, respectively). The linear regression coefficient of the gold standard values on the respective MIRS-predicted values of a*, L*, and b* was 0.81, 0.88, and 0.96, respectively; only the regression coefficient on L* was different from 1. The mean bias of prediction (i.e., the average difference between the MIRS-predicted values and gold standard values in external validation) was not different from zero for any of 3 parameters evaluated. A moderate correlation (0.56) existed between the MIRS-predicted L* and b* indices, both of which were weakly correlated with the a* index. Milk fat, protein, and casein were moderately correlated with both the gold standard and MIRS-predicted values for b*. Results from the present study indicate that MIRS data provides an efficient, low-cost screening method to determine the b* color of milk at a population level.