Effect of feed restriction timing on live performance, breast myopathy occurrence, and muscle fiber degeneration in 2 broiler chicken genetic lines
Gratta F., Birolo M., Sacchetto R., Radaelli G., Xiccato G.,Ballarin C., Bertotto D., Piccirillo A., Petracci M., Maertens L., Trocino A. (2019)
During recent years, research on meat quality in poultry has aimed to evaluate the presence and consequences of breast myopathies as well as the factors which can affect their occurrence by modifying the growth rate. A total of 900 broiler chickenswere reared until slaughter (48 D) to evaluate the effect of 2 genetic lines (A vs. B) and feeding plans (ad libitum [AL], early restricted [ER], from 13 to 23 D of age, and late restricted [LR], from 27 to 37 D of age; restriction rate: 80%) on performance, meat quality, and breast muscle myopathies. Calsequestrin and vascular endothelial growth factor (VEGF) expressions, and muscle fiber degeneration (MFD) were recorded at 22, 36, and 48 D. Chickens in the AL treatment had greater final live (P < 0.01) and carcass weights and proportion of pectoralis major muscle (P = 0.04) compared to chickens in the LR treatment, whereas chickens in the ER treatment had intermediate final live (3,454g) and carcass weights, and proportion of pectoralis major muscle (25.6%). Chickens of line A were heavier than chickens of line B (P < 0.001), and had a greater feed conversion rate. Chickens of line A also had a greater dressing out percentage (P < 0.001), but a lower proportion of pectoralis major muscle (P = 0.04), as well as a greater meat pH (P < 0.001), meat cooking losses (P < 0.01), and shear force of the pectoralis major muscle (P = 0.03). Calsequestrin and VEGF mRNA were significantly lower in ER and LR chickens compared to AL chickens after feed restriction and during refeeding (P < 0.05). MFD scores increased with chicken age (P < 0.001) and differed between genetic lines (P < 0.001). Neither feeding plan nor genetic line affected the occurrence of white striping or wooden breast condition.